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1 Classical Theory of Raman Scattering

When a system of molecules is placed in an electric field, the electrons and nuclei will be displaced in such a

manner as to induce dipole moments. If we make the valid assumption that the electric field is weak, the induced

dipole moment will be proportional to the field strength. The proportionality coefficient is called the polarizability,

α. Then in 3D space, the induced dipole moment is given by

µ = α ·E (1)

which is the dot product of a 3× 3 tensor and a 3 dimentional column vector. If E = E0 cosωt, then µ will vary

with time according to

µ = α ·E0 cosωt (2)

However, in real situations the vibration and the rotation of the molecule should be taken into account, which

means that the polarizability is a function of time. For simplicity, let these be diatomic molecules and take small

oscillation approximation:

α = α0 +α1 cosω0t (3)

in which ω0 denotes for the frequency of the normal mode and α1 is a measure of how the polarizability varies

with vibration. Substitude Eq. (3) into Eq. (2), we have

µ = α0 ·E0 cosωt+α1 ·E0 cosωt cosω0t (4)

which further expands to

µ = α0 ·E0 cosωt+
1

2
α1 ·E0 cos(ω + ω0)t+

1

2
α1 ·E0 cos(ω − ω0)t (5)

This equation shows us that the induced dipole oscillates not only with the incedent frequency ω, but also with

the frequency ω ± ω0. The first term accounts the Rayleigh scattering, and the second and third terms are called
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the Stokes and anti-Stokes scattering, respectively. We see that the frequencies observed in Raman scattering are

beat frequencies between the radiation frequency ω and the molecular frequency ω0, and the frequency difference

between the incident light and the scattered light is called the Raman shift.

Classical Electrodynamics tells us that the mean rate of radiation emitted over all directions by a dipole

oscillating according to µ = µ0 cosωt is given by

I =
ω4

3c3
|µ0|2 (6)

where c is the speed of light. The intensity of the scattered light is proportional to the square of the amplitude of

the induced dipole moment, so there exist the proportionality where

IRaman ∝ |α1 ·E0|2 = ET
0 ·αT

1 ·α1 ·E0 (7)

and if some proper approximation is made (as we shall do later in quantum description of Raman scattering), the

polarizability tensor could be symetric, thus we have

IRaman ∝ ET
0 ·α2

1 ·E0 (8)

Notes that α1 stands for the small change of polarizability due to the vibration, so one can easily understand that

when doing static calculation people always use the value |∂α/∂Q|2 at the equilibrium geometry, where Q is

the normal mode coordinate, to obtain the full spectroscopy. This was fully discussed in the 5th chapter of THE

RAMAN EFFECT, 2002 by Derek A. Long [1].

Classical theory is not enough for us to understand the process of photon scattering by non relativistic atomic

electrons. Concepts discussed above is just a rough physical picture of the Raman scattering process.

2 Quantum Theory of Raman Scattering

2.1 Kramers-Heisenberg Formula

With the help of Quantum Field Theory, one can treat the scattering process as creation and annihilation of

photons and consider photons as quantum-mechanical excitations of the radiation field. The interaction Hamiltonian

between the atomic electrons and the radation field is given by

Hint =
∑
i

[
− e

2mc
(pi ·A (xi, t) +A (xi, t) · pi) +

e2

2mc2
A (xi, t) ·A (xi, t)

]
(9)

where the summation is over the various atomic electrons that participate in the interaction, and the expression

A (xi, t) originates from the vector potential and is now a field operator assumed to act on a photon state or a

many-body state at xi, where xi is the position operator of the ith electron.

Recalling the Time-Dependent Second-Order Perturbation Theory, the transition probability from an initial
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state |i⟩ to a final state |f⟩ is given by

wi→f =
2π

ℏ

∣∣∣∣∣∣
〈
f
∣∣∣Ĥ2

∣∣∣ i〉+
∑
m

〈
f
∣∣∣Ĥ1

∣∣∣m〉〈m ∣∣∣Ĥ1

∣∣∣ i〉
Ef − Ei

∣∣∣∣∣∣
2

δ (Ef − Ei) (10)

If we describe the incedent light as with (ℏω, ϵ) where ϵ is the unit vector of the incoming direction and also the

scattered light (ℏω′, ϵ′) where ϵ′ is the unit vector of outcoming direction, after some fancy derivation in J. J.

Sakurai’s book ADVANCED QUANTUM MECHANICS, 1967 [2], the transition probability in some solid angle

can be written as

wdΩ =
2π

ℏ

(
c2ℏ

2V
√
ωω′

)2(
e2

mc2

)2
V

(2π)3
ω′2

ℏc3
dΩ

×

∣∣∣∣∣δifϵ · ϵ′ − 1

m

∑
n

(
⟨f |µ̂ · ϵ′|n⟩⟨n |µ̂ · ϵ| i⟩

En − Ei − ℏω
− ⟨f |µ̂ · ϵ|n⟩⟨n |µ̂ · ϵ′| i⟩

En − Ei + ℏω′

)∣∣∣∣∣
2

δ (Ef − Ei)

(11)

where µ̂ is the dipole operator (sum of charge times position) and r0 stands for the classical radius of the electron

r0 =
e2

4πmc2
≃ 1

137

ℏ
mc

≃ 2.82× 10−13 cm (12)

When divided by the flux density c/V and solid angle dΩ, the transition probability becomes the differential cross

section:

dσ

dΩ
= r20

(
ω′

ω

) ∣∣∣∣∣δifϵ · ϵ′ − 1

m

∑
n

(
⟨f |µ̂ · ϵ′|n⟩⟨n |µ̂ · ϵ| i⟩

En − Ei − ℏω
− ⟨f |µ̂ · ϵ|n⟩⟨n |µ̂ · ϵ′| i⟩

En − Ei + ℏω′

)∣∣∣∣∣
2

δ (Ef − Ei) (13)

Eq.(13) is called the Kramers-Heisenberg formula. It was derived before the advent of quantum mechanics

by Hendrik Kramers and Werner Heisenberg in 1925, based on the correspondence principle applied to the classical

dispersion formula for light. The quantum mechanical derivation was given by Paul Dirac in 1927. When the

final state and the initial state do not coincide (as always the case in Raman scattering), the first term in the square

bracket vanishes, and because the scattered frequency is usually close to the incident frequency, ω ≃ ω′, we may

write the differential corss section of Raman scattreing as

dσ

dΩ
=

r20
m

|⟨i |ϵ · α̂ · ϵ′| f⟩|2 δ (Ef − Ei) , where α̂ =
∑
n

[
µ̂ |n⟩⟨n| µ̂

En − Ei − ℏω
− µ̂ |n⟩⟨n| µ̂

En − Ei + ℏω

]
(14)

differentiate
dσ

dΩ
with respect to ℏω, we have

d

dℏω
dσ

dΩ
=

r20
m

|⟨i |ϵ · α̂ · ϵ′| f⟩|2 δ (ω − ωfi) , where ωfi =
Ef − Ei

ℏ
(15)

This could be the starting point of introducing the correlation function formalism for AIMD simulation, but there

exists one main obstacle: the dependence on n in the denominator of α̂. So we have to do some simplification

to make the formula more tractable.

2.2 Simplification for the Polarizability

Learned from the book RAMAN SPECTROSCOPY: THEORY AND PRACTICE by Herman A. Szymanski [3],

this siplification is straight forward, involving a series expansion and a truncation. Let’s take out the first term

α̂1 =
∑
n

µ̂ |n⟩⟨n| µ̂
En − Ei − ℏω

(16)
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as an example and later we will find that this mathematical trick suits the second term α̂2 as well.

Set the initial state always be the ground state, so we substitude E0 for Ei. I claim that there EXIST some

constant "average energy" Eav such that the following equation holds:

1

En − E0 − ℏω
=

∞∑
N=0

(−1)N
(En − Eav)

N

(Eav − E0 − ℏω)N+1
, if

∣∣∣∣ En − Eav

Eav − E0 − ℏω

∣∣∣∣ < 1 (17)

This is in fact a geometric series expansion, and the requirement behind is the convergence condition of the

geometric series. Plug Eq.(17) into α̂1, we have

α̂1 =
∑
n

µ̂ |n⟩⟨n| µ̂
En − E0 − ℏω

=
∑
n

∞∑
N=0

(−1)N µ̂

[
(En − Eav)

N

(Eav − E0 − ℏω)N+1

]
|n⟩⟨n| µ̂ (18)

Because En is the eigenvalue of the Hamiltonian, we can substitude Ĥ|n⟩ for En|n⟩ in the above equation:

α̂1 =
∑
n

∞∑
N=0

(−1)N µ̂

[
(Ĥ − Eav)

N

(Eav − E0 − ℏω)N+1

]
|n⟩⟨n| µ̂ (19)

swich the order of the summation, we eliminate the summation over n and obtain

α̂1 =

∞∑
N=0

(−1)N
µ̂ (Ĥ − Eav)

N µ̂

(Eav − E0 − ℏω)N+1
=

µ̂ µ̂

Eav − E0 − ℏω
− µ̂ (Ĥ − Eav) µ̂

(Eav − E0 − ℏω)2
+ · · · (20)

Note that this series is not only a geometric series but also alternating series, so it converges pretty fast. If we

truncate the series at the first term when N = 0 and assume the polarizability does not change too much

when light is shed on the molecule (which means this is the 0th-order approximation), we have the following

proportionality:

α̂1 ∝ µ̂ µ̂ or α̂1,ρσ ∝ µ̂ρ µ̂σ (21)

where ρ, σ run from 1 to 3 denoting for x, y, z in 3D space.

Obviously, this mathematical trick is not only applicable to the first term α̂1, but also to the second term α̂2.

Put them together, what really matters is the following proportionality:

α̂ ∝ µ̂ µ̂ ∝ x̂ x̂ or α̂ρσ ∝ µ̂ρ µ̂σ ∝ x̂ρ x̂σ (22)

By the elegance of proportionality, I have eliminated the somehow weird Eav . The EXISTENCE of Eav is all I

need! Back to Eq.(15), we may now introduce our correlation function formalism.

2.3 Correlation Function formalism

This part follows Chapter 21: The Time-Correlation Function Formalism I, STATISTICAL MECHANICS, 1976

by Donald A. McQuarrie [4]. Do ensemble average to the differential cross section in Eq.(15) and switch the

delta function to the time domain, we have

d

dℏω
dσ

dΩ
∝
∫ ∞

−∞
dte−iωt

∑
if

ρi |⟨i |ϵ · α̂ · ϵ′| f⟩|2 ei(ωf−ωi)t (23)
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where ρi is the density distribution of the initial state. It is pretty easy to see that the summation over i, f gives

ensemble average, and handing out the eiωf t, e−iωit paves the way to Dirac interaction picture, which gives

d

dℏω
dσ

dΩ
∝
∫ ∞

−∞
dte−iωt ⟨(ϵ · α̂(0) · ϵ′)(ϵ · α̂(t) · ϵ′)⟩ (24)

where (ϵ · α̂(0) · ϵ′)(ϵ · α̂(t) · ϵ′) can be written in component form as

(ϵ · α̂(0) · ϵ′)(ϵ · α̂(t) · ϵ′) =

 3∑
i=1

3∑
j=1

ϵi α̂ij(0) ϵ
′
j

( 3∑
k=1

3∑
l=1

ϵk α̂kl(t) ϵ
′
l

)
(25)

in which αij(t) is the ijth component of the polarizability tensor. Our differential cross section is now

d

dℏω
dσ

dΩ
∝
∫ ∞

−∞
dte−iωt

∑
ijkl

〈
ϵiϵ

′
jϵkϵ

′
l

〉
sphere × ⟨α̂ij(0)α̂kl(t)⟩ensemble (26)

where
〈
ϵiϵ

′
jϵkϵ

′
l

〉
sphere is the average over the solid angle. In experiments, people always put the observer

perpendicular to the incident light beam, so we set ϵ ⊥ ϵ′, thus we have

ϵiϵ
′
jϵkϵ

′
l =

1

30
(4δijδkl − δikδjl − δilδjk) (27)

Plug this into Eq.(26), it becomes

d

dℏω
dσ

dΩ
∝
∫ ∞

−∞
dte−iωt

∑
ρσ

〈
α̂ρσ(0)α̂σρ(t)−

1

3
α̂ρρ(0)α̂σσ(t)

〉
ensemble

(28)

which can be written in a more compact form:

d

dℏω
dσ

dΩ
∝
∫ ∞

−∞
dte−iωt

〈
Tr
[
β̂(0) · β̂(t)

]〉
ensemble

(29)

where β̂(t) = α̂(t)− 1
3Tr [α̂(t)] I , so that Tr[β̂(t)] = 0.

With the help of our simplification in section 2.2, we can repalce the polarizability tensor with the position

operator to give

d

dℏω
dσ

dΩ
∝
∫ ∞

−∞
dte−iωt

∑
ρσ

〈
x̂ρ(0)x̂σ(0)x̂σ(t)x̂ρ(t)−

1

3
x̂ρ(0)x̂ρ(0)x̂σ(t)x̂σ(t)

〉
ensemble

(30)

In practice, because quantum correlation functions are usually difficult to calculate, classical autocorrelation

functions obtained from classical simulations are more often used for spectra computation. Within the harmonic

oscillator model, the Fourier transform of quantum and classical autocorrelation function only differ by a

frequency-dependent prefactor, as we have already seen in infrared spectroscopy.

Although the idea for calculating both classical and quantum average is quite simple, as is mentioned in Yiwen’s

note for IR spectrum, summation over ρ, σ in Raman spectrum brings more difficulties above. Introducing 3D

isotropic harmonic approximation:

H =
p21 + p22 + p23

2m
+

1

2
mω2

0(x
2
1 + x2

2 + x2
3) (31)

thanks to Wolfram Mathematica 13.0.0, Sthdent Edition, the classical average takes

10k2T 2

m2ω4
0

cos2 ω0t (32)
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and the quantum average takes

ℏ2e
(3k2T2−1)ℏω0

2kT

[
7 cos

(
2w0t− iℏω0

kT

)
− 3 cosh

(ℏω0

kT

)
+ 3 cos(2ω0t) + 13

]
2m2ω2

0

(
e

ℏω0
kT − 1

)2 (33)

After Fourier transformation, the prefactor is determined by

∫ ∞

−∞
dte−iωt ⟨· · · ⟩Quantum

/∫ ∞

−∞
dte−iωt ⟨· · · ⟩Classical =

e(−1+3k2T 2)ℏω0/2kT (3 + 7eℏω0/kT )ℏ2ω2
0

10(−1 + eℏω0/kT )2k2T 2
(34)

The Mathematica .nb file is attached as appendix. Please contact me if you find any mistakes.

3 Conclusion

In this note, I start with the classical theory for light scattering, giving a physical picture of this process and then

terned to quantum description. The Kramers-Heisenberg Formula comes from the Time-Dependent Second-Order

Perturbation Theory which focuses on the transition probability of a system under harmonic perturbation. As the

transition probability is proportional to the intensity of scattered light, we then jump to the expression of scattering

differential cross section, where we begin the rest of our journey.

The correlation function formalism cannot be introduced directly because the summation over states in the

oringial formula. Under zero-th-order approximation, we let some "average energy" of the states to replace

the summation over states, and then siplification of the polarizability leads to the proportionality between the

polarizability tensor and the summation and multiplication of position operators, which is further calculated by

mathematical software.

One thing I have to emphasize is that the truncation of our polarizability and later the introduction of propor-

tionality together get rid of the frequency dependence (ω in the denominator) of the original polarizability. This

only holds when the polarizability does not change too much during the measurement. In some situations, this

could have some influence on the final prefactor. Let fq(λ) and fc(λ) and stands for the frequency dependence

of the polarizability, then the prefactor could look like

∫ ∞

−∞
dte−iωt ⟨· · · ⟩Quantum

/∫ ∞

−∞
dte−iωt ⟨· · · ⟩Classical =

∫
fq(λ)dλ∫
fc(λ)dλ

e(−1+3k2T 2)ℏω0/2kT (3 + 7eℏω0/kT )ℏ2ω2
0

10(−1 + eℏω0/kT )2k2T 2

This is just an intuition. I am not sure about the exact form, but the answer should be close to this.
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