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Introduction

Density matrices are fundamental to theoretical calculations,
vet traditional methods are computationally expensive for large
molecular systems. This work presents an equivariant machine
learning framework inspired by Graph2Mat[1] that combines
MACE[2] and E3NNL3] architectures to predict both mean-field
and correlated density matrices directly from molecular
geometries. We also introduce several key methodological
advances:

v] use of Gaussian basis sets;
use of superposition of atomic densities (SAD) as a prior;
v] extension to correlated density matrix learning.

We benchmark our approach through evaluation on Aspirin MD
17 and QM9 with one SCF cycle for mean-field DM and frozen
natural orbital (FNO) method for correlated DM .

Theory
1-Particle Reduced Density Matrix (1RDM)
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Calculation:  HF, MP2, CCSD, DFT...
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Equivariance of the 1RDM
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Model Prediction: backward,

Model — MACE + E3NN
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Results

Mean-field 1RDM
Dataset: Aspirin MD 17
Label: HF DM (w/o SAD)

1 kcal/mol (chemical
accuracy) accuracy for
total energy with up to 4-
body MACE features.

Ve
I
=
o
)
ae]
e
>
qe}
L
=
T
—
=
~.
@}
Q
—
N’
»

* 0.1 eV accuracy in band
gap using up to g-orbital
(=4) MACE features.
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e Similar performance

compared to previous
work (Graph2Mat).

Message Passing

Node Representation

Atom Model

Bond Model

Atom Feats Bond Feats

Ground State Energy Error

[—
-
(N
|

(WY
Or—i
|

| =

- HOMO-LUMO Gap Error

B Prediction
i B One Cycle
11§
g
SAD 2 3 < S
n body

10

i

T B & B

B Prediction

SAD 10

20 30 40

Hidden States

MP2 1RDM & FNO-CCSD

Dataset: Aspirin MD 17
Label: MP2 DM (vv block)

* 0.1 kcal/mol accuracy for
FNO-CCSD E.,,, On unseen
configurations using only
200 training configurations.

» Up to d—orbital (=2) MACE
features are sufficient, lower
than HF DM learning (need
=4).

Transferability

Dataset: QM9
Label: MP2 DM (vv block)

* 1 kcal/mol accuracy for
FNO-CCSD E.,,, On unseen
molecules using only ~100
training points.

Conclusion

ML vs MP2: Ecorr, delta ErrOr
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* MACE + E3NN offers a general framework for 1RDM learning.

e Validated our framework for both mean-field (HF) and
correlated (MP2) 1RDM learning.

* Model predicted HF 1RDM leads to accurate total and orbital
energy after taking a single SCF step.

* Model predicted MP2 1RDM leads to accurate reduced-scaling
CCSD calculations as demonstrated for FNO-CCSD.
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